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A theoretical model is proposed for the �0,0,1� superlattice manganite system �LaMnO3�n�SrMnO3�m. The
model includes the electron-electron, electron-phonon, and cooperative Jahn-Teller interactions. It is solved
using a version of the single-site dynamical mean-field approximation generalized to incorporate the coopera-
tive Jahn-Teller effect. The phase diagram and conductivities are calculated. The behavior of the superlattice is
found to be a good approximation to be an average over the density-dependent properties of individual layers,
with the density of each layer fixed by electrostatics.
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I. INTRODUCTION

An exciting recent development in materials science is the
ability to fabricate atomically precise multilayer structures
involving transition-metal oxides.1–6 Multilayer structure
based on simple semiconductors such as Si and GaAs or
AlGaAs gives rise to wide range of striking physical phe-
nomena, such as the integer and fractional quantum Hall
effects,7,8 and are important for many classes of devices. It is
therefore natural to expect that transition-metal oxides,
which display a far richer variety of phenomena than do
semiconductors,9 will, in heterostructure form, yield an even
more diverse set of new phenomena.

The colossal magnetoresistance �CMR� rare-earth manga-
nites La1−xSrxMnO3 have been studied intensively10–15 and
have provided an important model system. These compounds
display a wide range of phases with characteristic orbital,
magnetic, and transport signatures,10,11,16,17 providing oppor-
tunities both for creating many effects in the superlattice
�SL� context and for detecting phases that may be created.
Manganite superlattices have now been fabricated and are
being studied experimentally4–6 but have not yet received
much theoretical attention. In this paper we present a theo-
retical analysis of these interesting systems. Our findings
may be summarized by the following four rules: �1� the layer
charge distribution mainly depends on the electrostatic inter-
action and has very weak dependence on the temperatures
and on whether or not the system has orbital or magnetic
order; �2� once the layer charge distribution is given, the
orbital order at each layer is essentially determined by the
bulk behavior at the same density: the propagation length of
the orbital order along the superlattice is less than a lattice
constant; �3� the interlayer magnetic coupling is ferromag-
netic �FM� except between layers with densities close to one,
where it is antiferromagnetic �AFM�; and �4� the in-plane
conductivity is essentially the average of bulk conductivities
for the given layer charge distribution. These results indicate
that the main effect of superlattice structure is simply to pro-
duce a layer-dependent charge distribution. Once the layer
densities are known, each layer behaves basically according
to the bulk phase diagram for that density with only weak
proximity effects.

The rest of this paper is organized as follows. First we
define the superlattice and discuss the interactions considered

in the bulk model then we present and discuss results for a
particular superlattice consisting of four layers of LaMnO3
and one of SrMnO3 in detail. From these and related calcu-
lations we infer the rules outlined above. Finally we use the
rules to discuss recent experiments4,5 arguing that the data
still may not be displaying intrinsic behavior. We propose
experiments on a variant of the superlattice which may be
more definitive.

II. DEFINITIONS, HAMILTONIAN,
METHODS, AND PHASES

A. Definition of superlattice

The high-temperature structure of LaMnO3 is a slightly
distorted version of the ABO3 perovskite. It may be thought
of as a simple-cubic lattice with Mn on the cube vertices and
La in the body centers. The superlattices of interest here are
composed of the same cubic lattice of Mn, with a superstruc-
ture defined by a periodic replacement of La by Sr. To
specify the superlattice we must specify the direction along
which the La or Sr sites alternate and the way the La and
Sr ions are arranged. We will consider a �0,0,1�
�LaMnO3�m�SrMnO3�n superlattice, abbreviated as LmSn or
�m ,n�, defined by m La planes perpendicular to the �0,0,1�
cube axis, and followed by n Sr planes. The entire structure
has a periodicity �m+n� in the z �coordinate� direction while
maintaining the original lattice translational symmetry in x
and y. The upper panel of Fig. 1 shows a L4S1 �4,1� super-
lattice. We shall refer to each x-y plane as a layer.

B. Hamiltonian and parameters

The degrees of freedom needed to describe the physics of
manganites are11 the two eg-like orbitals which make up Mn
conduction band: an electrically inert classical core spin rep-
resenting electrons occupying t2g orbitals at Mn sites and the
three even-parity MnO6 distortion modes Q0, Qx, and Qz.
The Hamiltonian for the manganite superlattice is the Hamil-
tonian for bulk manganites supplemented by Coulombic
terms representing the potential arising from the pattern of
the La and Sr ions, thus H=Hbulk+HCoul. The bulk Hamil-
tonian is Hbulk=Hband+HEE+HHund+Hel-lat+Hlattice where
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Hband = �
k�,ab,�

�k�,ab,�ck�,a,�
† ck�,b,� �1�

with �k�,ab,�=−t��0ê+�z�̂z+�x�̂x�ab where e is the unit matrix,
�̂ are Pauli matrices and �0=cos kx+cos ky +cos kz, �z

=cos kz− 1
2 �cos kx+cos ky�, and �x=

�3
2 �cos kx−cos ky�. a ,b

label orbitals, i , j label sites, and � labels spins. From our
previous band-structure calculation,18 the hopping parameter
t is 0.65 eV which defines the energy unit. We note that the
states described by Eq. �1� are Mn-O antibonding, but only
the dispersion is relevant here,

HEE = �U − J�n1n2 + U �
i=1,2

ni,↑ni,↓

+ J�c1,↑
† c1,↓

† c2,↓c2,↑ + H.c.� − 2JS�1 · S�2 �2�

with S�1�2�=�� ��c1�2�,�
† c1�2�,�. The values U�2.5 eV and J

�0.5 eV are found to be appropriate for the manganite19

HHund = − JH�
i

S� i · ci,�
† �� ��ci,� �3�

with JH�1.5 eV and �S� �=1. An additional antiferromagnetic
core-spin interaction exists in the material. This interaction is
crucial for x�0.5 but affects only minor details of the x
	0.5 regime of interest here, i.e., it changes the phase
boundaries but does not lose any exhibited phases. Including
this interaction involves too great a computational expense,
so we do not include it here.

For the electron-lattice interactions12 we only include the
Jahn-Teller coupling,

HJT = − �
i,a,b

�Qi,x�ab
x + Qi,z�ab

z �ci,a
† ci,b = − �

i,a,b
Q� i · ��abci,a

† ci,b

�4�

with Q� i= �Qi,x ,Qi,z�=Qi�sin 2
i , cos 2
i� �0	
	��. We ne-
glect the breathing mode coupling12 in the current calcula-
tion.

For the lattice Hamiltonian we include an elastic energy
term from adjacent Mn-O and Mn-Mn force constants15,20

and the cubic term noted by Kanamori,21

Hlattice = �
ij,ab

1

2Kij
abQi,aQj,b − A�

i

�3Qi,z
3 − Qi,x

2 Qi,z� , �5�

with i , j labeling sites while a ,b labeling distortion modes.
As far as eg electrons are concerned, La and Sr ions act as

+1 and neutral point charges, respectively.22,23 In the super-
lattice, the distribution of those cations is patterned and the
Hamiltonian from electrostatics is

HCoul = �
ij
� 1

2�̄

e2ninj

�r�i − r� j�
+

1

2�̄

e2

�R� i
La − R� j

La�
−

e2ni

�̄�r�i − R� j
La�
�

�6�

with ni=��,aci,a,�
+ ci,a,� as the occupation number at Mn site i.

r�i and R� i
La are positions of Mn and La in ith unit cell and �̄ is

the dielectric constant of the material. To describe the mag-
nitude of this interaction, we define the dimensionless
screening parameter �	e2 /a�̄t which controls the charge-
density distribution. The value of � has not been determined,
but its order of magnitude may be estimated from the hop-
ping parameter t�0.65 eV, lattice constant a=4 Å, and
typical value of dielectric constant �̄�10 �Ref. 24� to be �
=0.2.

C. Method and results from bulk model

We now briefly discuss the method of solving the model.
To solve the model we use the single-site dynamical mean-
field theory �DMFT� �Ref. 25� with semiclassical impurity
solver.26 The intersite lattice coupling �cooperative Jahn-
Teller effect20,27� is taken into account within the single-site
DMFT by the mean-field approximation, i.e., the local impu-
rity problem contains an effective interaction from distor-
tions at neighboring sites.15 For the term introduced by the
superlattice HCoul, we adopt the Hartree approximation
whose overall effect is to generate a self-consistent potential
at each Mn site.22,23 The optical conductivities are computed
in the same manner as described in Ref 14 and the dc values
are obtained by taking the �→0 limit. Specifics of the
DMFT computation are presented in Ref 15.

The first step to study the superlattice is to understand the
parental bulk system. Figure 2 shows the theoretically calcu-
lated bulk phase diagram. Figure 2 is different from what we
presented in Ref 15 in-phase boundaries because here we
neglect the AF magnetic coupling between Mn core spins.
This simplification does not lose any phases for the doping
range x	0.5 but does lose phases for x�0.5; therefore
we only present bulk results for x	0.5 and only consider

FIG. 1. �Color online� Upper panel: Schematic representation of
a �LaMnO3�4 �SrMnO3�1 superlattice with Mn manganese and O
oxygen ions denoted by shaded and open circles, respectively. Lan-
thanum and strontium ions labeled by La or Sr reside in the center
of cubes defined by Mn. Lower panel: Upper part—projection of
�4,1� superlattice onto x-z plane, with the three symmetry inequiva-
lent Mn sites labeled A, B, and C. Middle part—a numerical repre-
sentation of charge density and amplitude of orbital order computed
for screening parameter �=0.3 at temperature indicated. Lower
part—pictorial representation of magnetic order �order-parameter
direction indicated by arrows� calculated using screening parameter
�=0.3 for two temperatures as indicated.
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n�
2� ,1� superlattices where all layers have eg electron oc-
cupations larger than 0.5. Our bulk calculation overestimates
the transition temperatures but gives a reasonable description
of the ordering of phases. For this reason we focus on the
exhibited phases in superlattice but not the transition tem-
peratures on the numerical values.

D. Planar long-ranged orders

Similar to earlier findings,22,23 the superlattice results are
most naturally presented by first describing the charge den-
sity and exhibited order�s� at each x-y plane and the super-
lattice phases are therefore the planer phases plus the rela-
tions between them. To facilitate later discussion, we
summarize here the three planar long-ranged orders found in
our calculation: a �� ,�� staggered Qx, a uniform Qz, and a
FM order. The first two are orbital orders; the ordering pat-
terns are shown in Fig. 3. For the staggered Qx order, all
octahedra in the plane undergo Qx distortions with the long
axis of each distorted octahedron differs by 90° from its
adjacent ones, as shown in Fig. 3�a�. For the +�−�Qz order,
all oxygens are in the middle of neighboring Mn, but the
Mn-O distance in the z direction is longer�shorter� than that
in x and y, as shown in Fig. 3�b�.

An equivalent way to describe the local-orbital order is to
use the ground state �
�=cos 
�3z2−r2�+sin 
�x2−y2� �Ref.

15� of the Jahn-Teller coupling 
Eq. �4�� with Q� i given by the
distortions. In this language the �� ,�� Qx order corresponds
to an alternating �
=� /4�, �
=−� /4� corresponds to the or-
bital configuration, and the uniform +�−�Qz corresponds to a
uniform �
=0� ��
=� /2��.

III. RESULTS FOR (4,1) SUPERLATTICE

In this section we present our calculated results for the
�4,1� superlattice: a representative case that captures most of
the relevant phenomena. We consider two different values of

�; �=0.09 corresponding to relatively delocalized electrons
and �=0.3 corresponding to tightly confined electrons.

For L4S1 each supercell has three symmetry-inequivalent
layers labeled as A, B, and C, as illustrated in Fig. 1�b�.
Figure 4 presents the L4S1 layer charge distribution for �
=0.09 �corresponding to a relatively delocalized electrons� at
temperatures 0.16t �above any ordered temperatures�, 0.12t
�orbital ordering but not magnetic ordering presented�, and
0.04t �both orbital and magnetic orders�. The variation in
charge distribution for different temperatures is smaller than
5%. We note that very recent x-ray scattering experiments on
manganite superlattice28 indicate a large change in L and K
edge absorption intensities as the temperature is decreased
through the Curie temperature. If the experiments measure
the total interface charge density, they may be in contradic-
tion to our results, but if data are proportional to the near-
Fermi-surface coherent excitations �which grow below Curie
temperature according to our calculation�, there may not be a
contradiction.29

The staggered Qx order. Table I lists the layer charge
density, the computed SL Qx order, and the bulk Qx order at
the given layer charge density of the �4,1� SL for �=0.3 and
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FIG. 2. �Color online� The calculated bulk phase diagrams. To
make comparison between our calculations and experiments, the
calculation done at T=0.1t corresponds to roughly 250 K in the
experiments �Ref. 15�.

FIG. 3. The orbital orders. �a� The staggered Qx and �b� uniform
Qz orders. For the staggered Qx order, all octahedra in the plane
undergo Qx distortions with the long axis �double arrows� of each
distorted octahedron differs by 90° from its adjacent sites. For the
+�−�Qz order, all oxygens are in the middle of neighboring Mn, but
the Mn-O distance in z direction is longer �shorter� than that in x
and y.
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FIG. 4. �Color online� L4S1 charge distribution for �=0.09 at
0.16t �above any ordering temperatures�, 0.12t �orbital ordering but
not magnetic ordering in superlattices�, and 0.04t �both orbital and
magnetic orders presented�.
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0.09 at T=0.12t. We see that the SL calculation is very close
to the bulk �	1%� which means that the Qx order is mainly
determined by its layer charge density and the proximity ef-
fect is very weak.

The very weak orbital order proximity effect for the stag-
gered Qx order has a straightforward physical origin. Rota-
tion symmetry about the bond in the z direction means that
neither nearest-neighbor �NN� hopping nor nearest-neighbor
atom-atom forces can distinguish +Qx order from −Qx order.
One consequence is that within this approximation �� ,� ,��
Qx and �� ,� ,0� Qx orders are degenerate implying that the
in-plane �� ,�� Qx order does not have any dispersion in z
direction and thus no interlayer coupling �no proximity ef-
fect� for this order. Second-neighbor hopping15 or certain
classes of shear elastic forces30 do distinguish the two but the
differences are small �of the order of minielectron volt�. We
will give a more detailed discussion in Sec. V C.

The uniform Qz order. The third and fourth rows in Table
I list the computed SL Qz order �reflective of the uniform
strain in the superlattice� of the �4,1� SL for �=0.3 and 0.09
at T=0.12t and the corresponding bulk results at the same
density. These results can be understood as follows. There
are two apparent sources affecting the uniform Qz order—the
anharmonic term in Hlattice and the SL effect. The net SL
effect is to produce an electrostaticlike force, i.e., oxygens
are pushed toward Mn layer with less eg density. One must
bear in mind that the origin of this force is because the oc-
tahedral distortion changes the Mn-O hybridization thus it
affects the population distribution of eg orbitals and has little
to do with the actual static Coulomb energy.15 For the param-
eters considered above, layer A is sandwiched by layer B
having similar charge densities �one in this case�; therefore
the SL effect is weak for A and the main contribution is from
the anharmonic effect. Indeed the Qz order of layer A is
−0.28t, which is very close to the bulk result −0.32t. For
layer B, besides the bulk effect which causes a −Qz order, the
charge inhomogeneity results in a +Qz order since oxygens
are pushed away from layer B and in this case these two
effects nearly cancel each other. For layer C, only the SL
effect contributes and the result is a 0.14t−Qz order. We see
that at interfaces the bulk and SL effects are of comparable
strengths; therefore the uniform Qz order has a significant
proximity effect.

The magnetic order. Now we discuss the magnetic order
for �=0.3 and 0.09. For �=0.3, only layer C has FM order at
T=0.1t. When lowering the temperature to 0.04t, all layers

are two-dimensional �2D� FM. The interlayer coupling be-
tween A and B �with layer densities roughly one� is AF and
all others are FM as shown in Fig. 1�b�. For �=0.09, one
obtains a smoother charge distribution and at low-
temperature all interlayer magnetic couplings are FM. Those
results suggest that the interlayer magnetic coupling is gen-
erally ferromagnetic except that between layers with densi-
ties close to one. The FM coupling between layers can be
understood from double-exchange mechanism where FM ar-
rangement maximizes the kinetic energy and is energy fa-
vored when the conduction band is not full. The AF coupling
between N=1 layers has the same origin as the bulk15 where
the system gains gap energy by arranging core spins antifer-
romagnetically. One interesting consequence of these results
is that if the charge density is sufficiently sharp enough to
introduce AF interlayer coupling ��=0.3, for example�, the
superstructures with odd number of La have an odd number
of AF bonds so the magnetic lattice has twice the period of
the structured one. For example, for the L3S1 superlattice,
we expect the period including the magnetic order is eight
and adding up magnetic orders from all layer leads to zero
total magnetization.

IV. SPECTRAL FUNCTIONS AND CONDUCTIVITIES
FOR DIFFERENT SUPERLATTICES

In this section we shall first establish the rule implied
from our superlattice calculation for the in-plane conductiv-
ity and also discuss the out of plane one. Based on the es-
tablished rule we discuss the temperature and superlattice
dependences on the dc measurements.

A. Rule for the conductivity

We found that once the layer charge densities ni are speci-
fied, the excitation spectrum at each layer behaves very close
to the bulk at the same density. We use the simplest super-
lattice L2S1 to demonstrate this point. For �2,1� SL there are
only two symmetry-inequivalent sites: one between La la-
beled as A while the other between La and Sr B, as shown in
Fig. 5�a�. For �=0.3 and T=0.12t we found nA�1 and nB
�0.5. Figures 5�a� and 5�b� show both the calculated SL
spectral functions for layer B�A� and the bulk for N=0.5�N
=1� at the same temperature.

Since the in-plane conductivity �xx
SL is dominated by in-

plane hopping processes �moving electrons from one site to

TABLE I. The amplitudes of the staggered Qx ��
Qx
s��� and uniform Qz ��
Qz

u��� orders for the L4S1
superlattice and for the corresponding bulk values at same densities for T=0.12t.

Site label

�=0.3 �=0.09

A B C A B C

Charge density 0.99 0.99 0.52 0.92 0.90 0.64

�
Qx
s�� SL 
t� 1.17 1.17 0 1.01 1.0 0

�
Qx
s�� Bulk 
t� 1.18 1.18 0 1.02 1.0 0

�
Qz
u�� SL 
t� −0.28 0 −0.14 −0.18 −0.03 −0.08

�
Qz
u�� Bulk 
t� −0.32 −0.32 0 −0.22 −0.2 0
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the other within the same layer� and the spectral function for
layer with density ni is very close to the bulk at the same
density, �xx

SL should be very close to the bulk-averaged value
�̄xx

bulk which is define as

�̄xx
bulk 	 �

i=1

N

�xx
bulk�ni�/N . �7�

To see how accurate this rule is, we list in Table II the cal-
culated SL dc conductivity �xx

SL and the bulk averaged �̄xx
bulk

according to the obtained charge distribution at T=0.12t
where the unit for �xx is e2 / ��a��6�103�� cm�−1 with a as
the lattice constant ��4 Å�. As a concrete example we com-
pute bulk averaged �̄xx

bulk for L4S1, �=0.09, and T=0.12t in
details. From Fig. 4 we see that there are two layers with
density 0.9 �layer B�, two layers with 0.64 �layer C�, and one
layer with density 0.91 �layer A� for those parameters. Now
we consult the bulk results for dc conductivity at T=0.12t
and find that �xx

bulk at N=0.9, 0.64, and 0.91 are 0.055, 0.12,
and 0.05, respectively. The bulk averaged �̄xx

bulk is thus

2�xx

bulk�n=0.9�+2�xx
bulk�n=0.64�+�xx

bulk�n=0.91�� /5 roughly
0.081. As listed in Table II, the difference between �̄bulk and
�xx

SL is roughly 10% for L2S1 and is smaller ��2%� for L3S1
and L4S1. Figure 6 compares the in-plane optical conductivi-
ties with the bulk averaged for the L4S1 at �=0.3 and T
=0.12. We see that they match quite well ��10%� �both peak
positions and peak amplitudes� for all frequencies.

Unlike the in-plane case, the out-of-plane conductivity
�zz

SL involves interlayer hopping processes �removing elec-
trons from layer i and adding them to layer i� ẑ�. Since
different layers experience different static Coulomb poten-
tial, there is no simple relation between �zz

SL and �ni�. Our
previous study22 of a simpler model system, namely, the one-
orbital double-exchange superlattice, shows that there are
peaks in �zz

SL��� directly corresponding to the potential dif-
ference between layers from which the � is determined
straightforwardly. However for the current problem the po-
tential difference is mainly to produce layer-dependent local
spectra and are not directly related to peaks in �zz

SL. Nonethe-
less �zz

SL is more sensitive to the screening parameter than
�xx

SL and can be used to constrain the values of �. We will
return to this point in Sec. V B.
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FIG. 5. �Color online� Spectral functions for the �2,1� superlattice compared to bulk spectra at density equal to layer density for �
=0.3 and at T=0.12t. �a� The superlattice spectral functions for layer B and bulk at N=0.5. �b� SL spectral functions for layer A and bulk at
N=1. To facilitate the comparison, the bulk results are shifted 0.4t in frequency. The peak-peak distances are essentially the same for bulk
and SL calculations.

TABLE II. �xx
SL and �̄xx

bulk for different superlattices.

� 0.3 0.09 0.3 0.09 0.3 0.09

�̄xx
bulk 0.083 0.115 0.064 0.093 0.58 0.082

�xx
SL 0.077 0.105 0.067 0.093 0.6 0.081

SL L2S1 L2S1 L3S1 L3S1 L4S1 L4S1
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FIG. 6. �Color online� Calculated SL in-plane optical conductiv-
ity and the corresponding bulk averaged one for the L4S1 at �
=0.3 and T=0.12t. As a reference we also plot the bulk �xx��� for
N=1 and 0.5 �curves without ligands� at the same temperature
which are used for computing the bulk-averaged conductivities.
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B. Temperature dependence of dc resistivity

Now we discuss the temperature dependence on the dc
resistivity �. Figure 7 shows ��T� for �=0.3. We observe that
around T=0.11t d� /dT changes sign implying the superlat-
tice goes from high-T insulating phase to low-T metallic.
This downturn in ��T� coincides with the interface Curie
temperatures which are also marked 
Fig. 7�. Across this
temperature the interfaces go from paramagnetic �PM� or bad
metal to FM or metal accounting for the superlattice metallic
behavior. From double-exchange mechanism,14,15 the PM or
FM transition is always accompanied with an insulator or
metal �bad metal or metal at least� transition; the sign change
in d� /dT as a function of temperature is quite general for all
values of �, but is more pronounced for large �.

C. Superlattice dependence of dc conductivity

Since for small �, the superlattice behaves just like the
bulk material, we only focus on the � which leads to the
sharp charge distribution, i.e., �=0.3. Our result implies that
the SL conductivity is proportional to the interface density at
low temperature �the interface density is defined as the ratio
between the numbers of Mn sandwiched by La and Sr and
that of total Mn layers; for L2S1 the interface density is 2/3
and for L4S1 the interface density is 2/5�. This statement is a
direct consequence of the rule �xx

SL� �̄xx
bulk: for sharp charge

distribution, N�1 layers are insulating at low T and only
interface layers �N�0.5� are conducting. To demonstrate this
statement from the SL calculation, we define r�T�
=�xx

L4S1�T� /�xx
L2S1�T� and compare it with the ratio of inter-

face densities between L4S1 and L2S1 which is 0.6. The
following table presents r�T� for several temperatures:

T/t 0.15 0.1 0.07 0.04

r�T��=0.3 0.96 0.65 0.55 0.57

We see that r�T� is indeed very close to 0.6 below the inter-
face Curie temperature ��0.11t�. Finally we emphasize that

from our calculation, the statement “SL conductivities are
only from interfaces” is true only below temperature and
with sharp charge distribution.

V. DISCUSSION

In this section we first summarize our results by providing
rules deduced from our calculations then we discuss how to
determine the layer charge distribution and thus the screen-
ing parameter experimentally. Finally we give a more de-
tailed analysis on the proximity effect of the orbital orders.

A. Rules implied by the calculation

The exhibited phases at each layer are the combined ef-
fects of bulk Hamiltonian and the charge inhomogeneity in-
duced by the SL. Here we summarize our calculations by
stating the following rules which govern the displayed
phases at each layer.

�1.� The charge distribution is mainly determined by the
screening parameter � and is not sensitive to the tempera-
tures and orders.22,23

�2.� The staggered Qx order at each layer follows the bulk
behavior at the corresponding layer charge density.

�3.� The uniform Qz order is caused by two sources. First
�bulk effect�, a uniform −Qz order is induced with the pres-
ence of the staggered Qx order. Second �SL effect�, the
charge inhomogeneity induces an electrostaticlike force
pushing oxygens closer to the layer with lower density. Note
that the origin of this force is the Mn-O antibonding.15

�4.� The magnetic order: The interlayer coupling is FM
except that between layers with densities close to one.

�5.� The in-plane conductivity of the SL is essentially the
average of the bulk conductivities, i.e., for a given charge
distribution �n1 ,n2 , ..nN�, �xx

SL= �̄xx
bulk=�i=1

N �xx
bulk�ni� /N while

we do not have a simple rule for out-of-plane conductivities.

B. Determining the charge distribution
and screening parameter

Our results indicate that the key quantity for the SL is the
charge distribution and therefore determining the screening
parameter � is very important. In principle the charge distri-
bution can be determined by measuring the change in man-
ganese valence in the superlattice,1 but such measurements
have not to our knowledge been performed on manganite
superlattices. Here we propose two measurements to con-
strain the values of �. The first proposal is to grow superlat-
tices with odd number of LaMnO3 layers �L3S1, for ex-
ample� and to measure the total magnetization at low
temperature. If the charge distribution is sharp then the fer-
romagnetic interface layers are antiferromagnetically
coupled and the layer has zero net magnetization; whereas if
the charge distribution is broad, the system will simply be
ferromagnetic. This method suffers from a potential experi-
mental disadvantage: Lack of perfect oxygen stoichiometry
could produce ferromagnetism in the La-rich regions even in
the presence of a sharp charge distribution.4,31

The second one is to measure the optical conductivity.
The basic idea is that one should be able to decompose the
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FIG. 7. �Color online� The dc resistivity as a function of tem-
perature for �=0.3. X indicates the calculated interface Curie tem-
perature for each superlattice. The vertical dashed line marks a
rough temperature where d� /dT changes sign. As a reference we
also present the bulk result for N=2 /3 �x=1 /3�.
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in-plane optical conductivities into sum of bulk results. This
measurement is free from the interferences of the impurity
scattering or extra oxygens in the superlattice. Figure 8�a�
shows the in-plane L2S1 optical conductivities �xx

L2S1��� for
�=0.3 and �=0.09 at T=0.12t ��300 K and with interfaces
being slightly ferromagnetic�. We see that for �=0.3, the
�xx

L2S1��� is not peaked at zero frequency because 1/3 of the
contribution is from Mn layers with density close to one. On
the other hand for �=0.09, �xx

L2S1��� behaves more like a
bulk material.

The out-of-plane conductivities contain information of the
potential differences at different layers. As discussed in Sec.
IV A, as far as the �zz is concerned, the main effect of the
layer-dependent potentials is to produce layer-dependent lo-
cal spectral functions which makes �zz different from �xx at
high-T nonordered phase. Therefore the anisotropy in �
above ordering temperatures is a very straightforward esti-
mator of how confined or delocalized the electrons are. Fig-
ure 8�b� shows the out-of-plane conductivity �zz

L2S1��� for the
�2,1� superlattice. As expected larger � results in larger an-
isotropy in �. For the numerics, because the potential differ-
ence is not directly related to the peak in the out-of-plane
optical conductivity as in the model studied in Ref 22, one
has to compare the experimental data with theoretical results.

C. Orbital order proximity effects

Our calculation indicates that orbital order associated with
the Qz mode �octahedral distortion with long bond pointing
along z direction� is reasonably efficiently transmitted from
one layer to the next; whereas orbital order associated with
Qx �octahedral distortion with long axis in x-y plane� is not
transmitted at all. The approximations made in this paper
amount to retaining only nearest-neighbor interactions in
both the electronic and lattice sectors; in this approximation
rotational invariance about the bond in the z direction en-
sures that Qx order is not transmitted. In this section we
estimate the extent to which terms not included in our model
may change this result.

The transmission of Qx orbital order implies an energy
difference between states in which Mn ions in adjacent

planes have the same or opposite amplitudes for Qx order. To
estimate this we consider the energy difference between
�� ,� ,0� and �� ,� ,�� orbital order. There are two contribu-
tions to this energy: electronic and elastic.

We begin with the electronic term. A given lattice distor-
tion selects one locally favored state of each site i, which we
refer to as �
i

g�=cos 
i�3z2−r2�+sin 
i�x2−y2� and also the
orthogonal excited state �
i

e�. For the +Qx distortion the lo-
cally favored state is �
Qx

g �= 1
�2

�3z2−r2�+ 1
�2

�x2−y2� and the

locally disfavored state is �
Qx

e �= 1
�2

�3z2−r2�− 1
�2

�x2−y2�; for
the −Qx distortion the roles of 
g and 
e are reversed.

The �� ,� ,0� Qx and �� ,� ,�� Qx orders produce exactly
the same local distortions; an electronic contribution to the
energy difference between these two orders can therefore
only arise from a difference in the electronic hybridization
energies for the two states. We now argue that if only
nearest-neighbor hopping is present, there can be no hybrid-
ization energy difference between the two states. The in-
plane hopping is trivially the same for the two states; a dif-
ference can therefore only arise from the z-direction hopping.
The hybridization is given by a 2�2 matrix; in the nearest-
neighbor hopping approximation the matrix is degenerate in
all three directions with only one nonzero eigenvalue t. For
hopping in the z direction the only nonvanishing matrix ele-
ment is the one connecting �3z2−r2� orbitals on the two sites
implying that the matrix element between any combination
of �
Qx

g � and �
Qx

e � is t /2, so that the nearest-neighbor hopping
does not distinguish between the two states. Including the
second NN couplings can lift this degeneracy. The energy
difference can be estimated by comparing the energy gain
caused by the virtual processes involving second NN hop-
pings �superexchange� and is done in Ref 15. The local-
density approximation �LDA� calculation18 suggests the sec-
ond NN hopping is roughly 0.035 eV, leading to an energy
difference of the order of minielectron volt for these two
orders.

We next consider contributions arising from elastic forces.
In a ball and spring model, we have found that oxygen-
oxygen or three-body forces are required to propagate Qx
order. For these situations, spring constant models are not
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FIG. 8. �Color online� �a� In-plane and �b� out-of-plane optical conductivities for L2S1 for �=0.09 �with ligands� and 0.3 �without
ligands� at T=0.12t.
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reliable and band theory calculations of phonon stiffness are
required. Available information on these forces is presented
in Ref. 30; the result is that the energy difference is of the
order of minielectron volt, roughly the same magnitudes as
the electronic contribution. With these estimates we conclude
that our model captures the main physics of manganites and
the proximity effect for the planar staggered Qx order is in-
deed very weak in reality.

VI. CONNECTIONS TO EXPERIMENTS

The temperature dependences of the dc resistivity ��� and
magnetization �M� of �LaMnO3�2n�SrMnO3�n 
the �2n ,n� su-
perlattice in our notation� have been measured.4,5 In this sec-
tion we discuss the connection between our calculation and
these measurements.

A. dc resistivity

For the resistivity measurement, as the temperature is de-
creased from 400 K, the resistivity � is found to increase
until a superlattice-dependent temperature Td is reached. This
“downturn” in ��T� is observed for all �2n ,n� superlattices.
The temperature at which the downturn occurs �Td� is n de-
pendent �larger n lower Td� and is roughly 200–350 K 
Figs.
2�a�–2�c� in Ref. 4 and Fig. 2 in Ref. 5�. Above Td, the
magnitude of � has a very strong dependence on n. When the
temperature is further reduced below 100 K, the resistivity
increases again for n�3 superlattice while it keeps on de-
creasing for n	3.

Calculation finds two typical behaviors corresponding to
weakly and strongly bound charge distributions. For both
cases we expect a downturn in resistivity which is associated
with the interface FM or PM transition with the downturn
temperature essentially n independent. At very low tempera-
ture our theory predicts metallic �d� /dT�0� behavior. The n
dependence on the magnitude of � is different for these two
limits: for the weakly bound charge distribution � has very
weak n dependence while for the strongly bound � is propor-
tional to the interface density and thus �n.

The results according to our rules are in reasonable agree-
ment with the n	3 superlattices because they remain metal-
lic in the low temperature. For long period superlattice, ex-
cept the existence of the changing sign in d� /dT, our theory
is not compatible with experiments at quantitative level be-
cause of the exhibited n dependence on � and Td and because
of the low-T insulating phase. Essentially the experimental
measured � depends too strongly on n compared to our the-
oretical prediction as shown in Fig. 9. We think these incon-
sistencies are caused by the n-dependent interface quality.

B. Magnetization

For the magnetization measurement, Ref. 4 
Figs.
2�d�–2�f�� shows that all superlattices exhibit a net magneti-
zation below some onset temperature Tc

I �the superscript I
denotes interface�. Tc

I depends on n �decrease in Tc
I from 300

to 200 K when increasing n from 2 to 16� and is very close
to the downturn temperature in resistivity Td. For the n=2
superlattice, the magnetization increases and saturates when

lowering the temperature. For n=4 and 16 superlattices, the
magnetization increases slowly right below Tc

I then more
rapidly around 150 K. When the system is further cooled
without applying a magnetic field 
zero-field cooling �ZFC��,
the magnetization reaches a maximum �roughly the same
value �0.4�B /Mn for both n=4 and 16� around 110 K, be-
fore it eventually decays to zero. If the system is cooled in an
applied magnetic field 
field cooling �FC��, the n=2 super-
lattice behavior is not changed but for both n=4 and 16 the
magnetization saturates at 0.6�B /Mn approaching zero tem-
perature. We believe that the FC measurements reveal more
clearly the intrinsic behavior and we will therefore focus on
the FC data but we will comment on the ZFC data in the end.

Our calculation predicts that ferromagnetism is associated
with the interfaces. There is a critical thickness which de-
pends on the width of the charge distribution �value of ��.
For systems with n greater than this critical value �which
may be zero for very sharp charge distributions�, the magne-
tization resides only on the interfaces, so one expects an
onset at the interface Tc �comparable to the bulk value� and a
saturation value scaling with the interface density �with co-
efficient depending on ��.

Now we discuss the magnetization �the FC data� based on
our calculation. First our theory agrees reasonably well with
the n=2 �L4S2� superlattice assuming the critical thickness
is �3 so the LaMnO3 layers are ferromagnetically ordered
�the n=2 superlattice saturates at 2.8�B /Mn at low tempera-
ture indicating LaMnO3 layers are ferromagnetic�. However,
the behavior of the n=4 and 16 superlattices is not consistent
with our theory, except in the qualitative sense that resistivity
downturn and magnetic-onset temperatures coincide. The
strong n dependence of the magnetism-onset temperature Tc

I

is not found in the calculation, where ferromagnetism is an
interface phenomenon and therefore not strongly n depen-
dent. Further, the observed rapid growth in M below 140 K
and the saturation at about 1�B displayed in the long period
�n�6� superlattices is not found in our theory, which instead
implies antiferromagnetism below 140 K and a saturation
magnetization proportional to the interface density.

We believe that the inconsistency is a consequence of
oxygen stoichiometry that extra oxygens reside in La-riched
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FIG. 9. �Color online� The in-plane dc resistivities from experi-
ment at T=150 K �Ref. 5� �solid line� and from rule 5 at T=0.08t
with sharp charge distribution.
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regions so that LaMnO3 is effectively a slightly doped
manganites.4,31 Based on this assumption and our rules, we
now explain the FC data. Our rule states that each layer
behaves as a bulk manganite at the given charge density. For
the density close to but not equal to one, the system displays
canted A-AF order11 around 140 K which has a small but
nonzero net magnetic moment. Within this picture, the con-
stant but small saturation magnetization for n�6 superlat-
tices is the net magnetization from the canted A-AF order
and the rapid growth around 140 K which is caused by the
forming of the canted A-AF order in the La-riched regions.
The remaining issue is the n dependence on the interface
Curie temperature. We believe this is caused by the
n-dependent interface quality. Since the main energy gain for
PM or FM transition is the kinetic energy �double exchange�,
we expect the bad interface quality tending to localize elec-
trons will reduce the Curie temperature. This is qualitatively
consistent with the observation.

Finally we comment on the zero-field-cooled data. The
most striking feature for ZFC data is that for the n
4 super-
lattice the magnetization starts to decrease around 110 K
upon cooling. We associate this reduction in M with the
G-AF order developed in the SrMnO3 layers. The forming of
G-AF order in SrMnO3 weakens or temporarily kills the fer-
romagnetic coupling between ferromagnetic interfaces,
therefore it reduces the total magnetization. Note that the
Neel temperature for CaMnO3 is 110 K.16

C. Interface qualities and proposed experiments

Although the qualitative interpretations can be made, our
rules are not compatible with experimental data at quantita-
tive level, in particular, the resistivity measurement. We be-
lieve this discrepancy is mainly caused by the n-dependent
interface quality which has two possible causes. The first one
is the mismatch in lattice constant. Since the LaMnO3 and
SrMnO3 have slightly different lattice constants, the interface
either tolerates very large strain forces or more probably cre-
ates some defects to compensate the mismatch. The presence
of defects increases the scattering sources and thus the resis-

tivity which is not considered in our model. The second one
is the magnetic frustration. Since LaMnO3, SrMnO3 at low
temperature displays A-type and G-type AF orders, respec-
tively; interfaces undergo the magnetic frustration which
suppresses the tendency of FM order and again increases the
resistivity.

To reduce these extra variables in experiments, we pro-
pose one should conduct experiments on �n ,1� SL. For this
�n ,1� series SL, since no Mn is sandwiched by Sr layers we
expect the effects due to the lattice-constant mismatch should
be relatively small. Perhaps more importantly complications
from the magnetic frustration caused by SrMnO3 AFM re-
gions will not enter the problem. Based on these arguments
the n-dependent interface quality is expected to be strongly
reduced and the direct comparison between experiments and
theory becomes easier.

VII. CONCLUSION

We have studied the �LaMnO3�n�SrMnO3�1 �n ,1� super-
lattice. We found that the charge distribution determined by
the screening parameter � is the key quantity and propose
that the optical conductivity measurement of L2S1 can fix it.
Once the charge density at each layer is known, the phases
essentially follow the bulk at the corresponding density. Gen-
eral rules for phases are given. We propose that measure-
ments on the low-temperature magnetization of the L3S1 SL
and on the optical conductivity help constrain the range of �.
For �=0.3, which results in sharp charge distribution, we
predict that at low temperature the �n ,1� superlattice has no
net magnetization with period 2� �n+1� for odd n. Finally
we comment on recent experiments based on our calcula-
tions and infer that the main discrepancy is caused by the
sample-dependent interface quality. We suggest the �n ,1� su-
perlattice is actually a physically simpler and cleaner system
to study.
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